Sign in Register Submit Manuscript

Damray Home

Location: Home >> A Systematic Review on Epidemiology, Pathogenesis, Clinical Spectrum, Diagnostic Techniques and Control Strategies of West Nile Fever

  • donwnload article

    Download Article

  • donwnload article

    Share Article

Article

A Systematic Review on Epidemiology, Pathogenesis, Clinical Spectrum, Diagnostic Techniques and Control Strategies of West Nile Fever

Mahendra Pal1,*, Tesfaye Rebuma2

1Narayan Consultancy of Veterinary Public Health, and Microbiology, Bharuch 388001, Gujarat, India.

2Shaggar City Administration Sebeta Subcity Agricultural Office, Sebeta WJ7H+CJ8, Oromia, Ethiopia.

*Corresponding author: Mahendra Pal

Published: 24 October 2024 How to cite this paper

Abstract

Zoonoses that involve multiple etiological agents are an important cause of morbidity and mortality throughout the world. Globally, around one billion are affected by zoonotic diseases every year. West Nile fever, caused by the mosquito-borne West Nile virus (WNV) of the Flavivirus genus, is a significant emerging and re-emerging zoonosis with public health and economic ramifications. Primarily infecting birds, WNV also affects humans and other mammals, including horses, with transmission mainly via Culex mosquitoes and occasionally through blood transfusion, organ transplantation, and intrauterine transfer. Endemic in tropical and temperate regions, WNV leads to high morbidity and mortality across species. While most human infections are asymptomatic, approximately 20% develop symptoms ranging from mild fever to severe neuro-invasive diseases like meningitis and encephalitis. Horses, like humans, are dead-end hosts, often exhibiting severe neurological symptoms with high fatality rates. Diagnostic techniques include IgM antibody detection via MAC-ELISA and RT-PCR. Effective control measures emphasize mosquito population reduction, public education, and monitoring WNV activity in birds, animals, mosquitoes, and humans.

KEYWORDS: Emerging; Mosquitoes; Public Health; Re-emerging Zoonosis; Transmission; West Nile Virus

References

[1] Pal, M., Tariku, F., Upadhyay, D., and Zende, R. Current innovations in the diagnosis and immunization of emerging and re-emerging zoonoses. American Journal of Epidemiology and Infectious Disease. 2024;12(2):23-28.

[2] Pal, M., Singh, R. K., and Hazarika, R. A. West Nile fever-An emerging and re-emerging infectious viral metazoonosis. International Journal of Livestock Research. 2013;4(1):1-9.

[3] Peterson, L. R., Brault, A. C., and Nasci, R. S. West Nile virus: review of the literature. Journal of American Medical Association. 2013;310(3):308-315.

[4] Simmonds, P., Becher, P., Bukh, J., Gould, E. A., Meyers, G., Monath, T., Muerhoff, S., Pletnev, A., Rico-Hesse, R., Smith, D.B., and Stapleton, J.T. ICTV virus taxonomy profile: Flaviviridae. Journal of General Virology. 2017;98(1):2-3.

[5] Popović, N., Milošević, B., Urošević, A., Poluga, J., Lavadinović, L., Nedelijković, J., Jevtović, D., and Dulović, O. Outbreak of West Nile virus infection among humans in Serbia, August to October 2012. Eurosurveillance. 2013;18(43):1-8.

[6] Leger, J. S., Wu, G., Anderson, M., Dalton, L., Nilson, E., and Wang, D. West Nile virus infection in killer whale, Texas, USA, 2007. Emerging Infectious Diseases. 2011;17(8):1531-1533.

[7] Stockman, J., Hawkins, M. G., Burns, R. E., Fang, Y., Brault, A. C., and Lowenstine, L. J. West Nile virus infection in a green-winged macaw (Ara chloropterus). Avian Diseases. 2010;54(1):164-169.

[8] Cardinale, E., Bernard, C., Lecollinet, S., Rakotoharinome, V.M., Ravaomanana, J., Roger, M., Olive, M.M., Meenowa, D., Jaumally, M.R., Melanie, J., and Heraud, J.M. West Nile virus infection in horses, Indian ocean. Comparative Immunology, Microbiology and Infectious Diseases. 2017;53:45-49.

[9] Rimoldi, G., Mete, A., Adaska, J. M., Anderson, M. L., Symmes, K. P., and Diab, S. West Nile virus infection in sheep. Veterinary Pathology. 2017;54(1):155-158. 

[10] Dahlin, C. R., Hughes, D. F., Meshaka Jr, W. E., Coleman, C., and Henning, J. D. Wild snakes harbor West Nile virus. One Health. 2016;2:136-138.

[11] Egberink, H., Addie, D.D., Boucraut-Baralon, C., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M.C., Hosie, M.J., Marsilio, F., Lloret, A., and Lutz, H. West Nile virus infection in cats: ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery. 2015;17(7):617-619.

[12] Root, J. West Nile virus associations in wild mammals: a synthesis. Archives of Virology. 2013;158:735-752.

[13] Garcia, M. N., Hasbun, R., and Murray, K. O. Persistence of West Nile virus. Microbes and Infection. 2015;17(2):163-168.

[14] Sbrana, E., Tonry, J. H., Xiao, S. Y., Da Rosa, A. P. T., Higgs, S., and Tesh, R. B. Oral transmission of West Nile virus in a hamster model. American Journal of Tropical Medicine and Hygiene. 2005;72(3):325-329.

[15] Hinckley, A. F., O'Leary, D. R., and Hayes, E. B. Transmission of West Nile virus through human breast milk seems to be rare. Pediatrics. 2007;119(3):666-671.

[16] Habarugira, G., Moran, J., Colmant, A. M., Davis, S. S., O’Brien, C. A., Hall-Mendelin, S., McMahon, J., Hewitson, G., Nair, N., Barcelon, J., Suen, W.W. Mosquito-independent transmission of West Nile virus in farmed saltwater crocodiles (Crocodylus porosus). Viruses. 2020;12(2):1-20.

[17] Colpitts, T. M., Conway, M. J., Montgomery, R. R., and Fikrig, E. West Nile Virus: biology, transmission, and human infection. Clinical Microbiology Reviews. 2012;25(4):635-648.

[18] Cervantes, D. T., Chen, S., Sutor, L. J., Stonecipher, S., Janoski, N., Wright, D. J., and Busch, M. P. West Nile virus infection incidence based on donated blood samples and neuro-invasive disease reports, Northern Texas, USA, 2012. Emerging Infectious Diseases. 2015;21(4):681-683.

[19] Lanciotti, R. S., Ebel, G. D., Deubel, V., Kerst, A. J., Murri, S., Meyer, R., Bowen, M., McKinney, N., Morrill, W. E., Crabtree, M. B., Kramer, LD. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 2002;298(1):96-105.

[20] Lafri, I., Hachid, A., and Bitam, I. West Nile virus in Algeria: a comprehensive overview. New Microbes and New Infections. 2018;27:9-13. 

[21] Dauphin, G., and Zientara, S. West Nile virus: recent trends in diagnosis and vaccine development. Vaccine. 2007;25(30):5563-5576.

[22] O'Leary, D. R., Kuhn, S., Kniss, K. L., Hinckley, A. F., Rasmussen, S. A., Pape, W. J., Kightlinger, L. K., Beecham, B. D., Mil-ler, T. K., Neitzel, D. F., and Michaels, S. R. Birth outcomes following West Nile Virus infection of pregnant women in the United States: 2003-2004. Pediatrics. 2006;117(3):537-545.

[23] WHO. West Nile virus Fact Sheet N 354.World Health Organization, Geneva, Switzerland. 2011. 

[24] Murray, K. O., Mertens, E., and Desprès, P. West Nile virus and its emergence in the United States of America. Veterinary Research. 2010;41(6):1-14.

[25] Nash, D., Mostashari, F., Fine, A., Miller, J., O'leary, D., Murray, K., Huang, A., Rosenberg, A., Greenberg, A., Sherman, M., and Wong, S. The outbreak of West Nile virus infection in the New York City area in 1999. New England Journal of Medicine. 2001;344(24):1807-1814.

[26] Williamson, P. C., Custer, B., Biggerstaff, B. J., Lanciotti, R. S, Sayers, M. H., Eason, S. J., Dixon, M. R., Winkelman, V., Lanteri, M. C., Petersen, L. R., and Busch, M. P. Incidence of West Nile virus infection in the Dallas–Fort Worth metropolitan area during the 2012 epidemic. Epidemiology and Infection. 2017;145(12):2536-2544.

[27] Diamond, M. S., Shrestha, B., Mehlhop, E., Sitati, E., and Engle, M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunology. 2003;16(3):259-278.

[28] Wang, T., Town, T., Alexopoulou, L., Anderson, J. F., Fikrig, E., and Flavell, R. A. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Medicine. 2004;10(12):1366-1373.

[29] Guarner, J., Shieh, W. J., Hunter, S., Paddock, C. D, Morken, T., Campbell, G. L., Marfin, A. A, Zaki, S. R. Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Human Pathology. 2004;35(8):983-990.

[30] Leis, A. A., and Stokic, D. S. Neuromuscular manifestations of human West Nile virus infection. Current Treatment Options in Neurology. 2005;7(1):15-22.

[31] Petersen, L. R., Roehrig, J. T., and Hughes, J. M. West Nile virus encephalitis. New England Journal of Medicine. 2002;347(16):1225-1226.

[32] Hayes, E. B., Sejvar, J. J., Zaki, S. R., Lanciotti, R. S., Bode, A. V., and Campbell, G. L. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerging Infectious Diseases. 2005;11(8):1174-1179.

[33] D'Agostino, J. J., and Isaza, R. Clinical signs and results of specific diagnostic testing among captive birds housed at zoological institutions and infected with West Nile virus. Journal of the American Veterinary Medical Association. 2004;224(10):1640-1643.

[34] Saegerman, C., Alba-Casals, A., García-Bocanegra, I., Dal Pozzo, F., and Van Galen, G. Clinical sentinel surveillance of equine West Nile fever, Spain. Transboundary and Emerging Diseases. 2016;63(2):184-193.

[35] Trevejo, R. T., and Eidson, M. West Nile virus. Journal of the American Veterinary Medical Association. 2008;232(9):1302-1309.

[36] Mostashari, F., Bunning, M. L., Kitsutani, P. T, Singer, D. A, Nash, D., Cooper, M. J., Katz, N., Liljebjelke, K. A., Biggerstaff, B. J., Fine, A. D., Layton, M. C. Epidemic West Nile encephalitis, New York, 1999: results of a household-based sero-epidemiological survey. The Lancet. 2001;358(9278):261-264.

[37] Abroug, F., Ouanes-Besbes, L., Letaief, M., Romdhane, F. B., Khairallah, M., Triki, H., and Bouzouiaia, N. A cluster study of predictors of severe West Nile virus infection. Elsevier. 2006;81(1):12-16.

[38] Roehrig, J. T., Nash, D., Maldin, B., Labowitz, A., Martin, D. A., Lanciotti, R. S., and Campbell, G. L. Persistence of virus-reactive serum immunoglobulin M antibody in confirmed West Nile virus encephalitis cases. Emerging Infectious Diseases. 2003;9(3):376-379.

[39] Suen, W. Investigation of neuropathogenesis and control of an equine-pathogenic Australian West Nile virus isolate in an established CD1 Swiss white mouse and a novel rabbit model. Ph.D. Thesis, Scholl of Veterinary Science, University of Queensland, Australia. 2017. https://doi.org/10.14264/uql/2017.125.

[40] Dayan, G. H., Pugachev, K., Bevilacqua, J., Lang, J., and Monath, T. P. Preclinical and clinical development of a YFV 17 D-based chimeric vaccine against West Nile virus. Viruses. 2013;5(12):3048-3070.

[41] Siger, L., Bowen, R. A., Karaca, K., Murray, M. J., Gordy, P. W., Loosmore, S. M., Audonnet, J. C., Nordgren, R. M., Minke, J. M. Assessment of the efficacy of a single dose of a recombinant vaccine against West Nile virus in response to natural challenge with West Nile virus-infected mosquitoes in horses. American Journal of Veterinary Research. 2004;65(11):1459-1462.

[42] Karaca, K., Bowen, R., Austgen, L. E., Teehee, M., Siger, L., Grosenbaugh, D., Loosemore, L., Audonnet, J. C., Nordgren, R., Minke, J. M. Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine. 2005;23(29):3808-3813.

How to cite this paper

Mahendra Pal, Tesfaye Rebuma. A Systematic Review on Epidemiology, Pathogenesis, Clinical Spectrum, Diagnostic Techniques and Control Strategies of West Nile Fever. International Journal of Medicine Frontiers, 2024, 7(2), 43-49.


Copyright © 2022 Damray Co., Ltd. Privacy Policy | Terms and Conditions